Search results

Search for "non-contact AFM" in Full Text gives 18 result(s) in Beilstein Journal of Nanotechnology.

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • is necessary because the first mode is used by the main AFM controller for topographic control (in frequency modulation mode in the case of non-contact AFM under UHV). In other words, it is the AFM controller which generates the source signal at ω0 + Δω0 which “excites” the mechanical oscillation of
  • implemented on a non-contact AFM operating under ultra-high vacuum, where the high resonance quality factors should now become an advantage and provide greater sensitivity. In the next section, we will provide some details on the technical implementation of DHe-KPFM on an nc-AFM. We will then demonstrate its
  • kHz (demodulation at the second eigenmode) for its heterodyne counterpart. Dual-Heterodyne Kelvin Probe Force Microscopy: Implementation Non-contact AFM (nc-AFM) and KPFM experiments are performed with a VT-beam AFM system (Scienta-Omicron) at room temperature (RT) under ultra-high vacuum (UHV
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • : where αi = {1.8750, 4.6941, 7.8548, … } are coefficients defined by the characteristic equation of an oscillating rectangular cantilever with one free end [60]. Note that for a typical non-contact AFM experiment, the tip end of the cantilever can be considered as free because the cantilever force
PDF
Album
Full Research Paper
Published 11 Oct 2022

Atomic defect classification of the H–Si(100) surface through multi-mode scanning probe microscopy

  • Jeremiah Croshaw,
  • Thomas Dienel,
  • Taleana Huff and
  • Robert Wolkow

Beilstein J. Nanotechnol. 2020, 11, 1346–1360, doi:10.3762/bjnano.11.119

Graphical Abstract
  • -functionalized tips. A true measurement of the force interaction between the tip and sample can be visualized with frequency-shift maps generated by non-contact AFM [28]. In our work, we observe two different imaging modes that we denote as dark (Figure 1g) and bright contrast AFM (Figure 1h), based on the
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2020

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • force minimum of both sites. Our results are consistent with these calculations. The use of pure metallic tips is not common in non-contact AFM measurements, since the widely used micro-fabricated levers are made of Si and at best these are coated with metals such as Pt/Ir in order to obtain a metallic
PDF
Album
Full Research Paper
Published 28 Nov 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • capacitance. Thus, FM detection is more sensitive to the electrostatic interaction of the tip apex with the sample surface [20]. Originally, the peroiodic oscillations in Δf were directly detected by means of a phased-locked loop in non-contact AFM under ultrahigh vacuum conditions. An elegant way of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips

  • Sumit Tewari,
  • Koen M. Bastiaans,
  • Milan P. Allan and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2017, 8, 2389–2395, doi:10.3762/bjnano.8.238

Graphical Abstract
  • structure of the tip apex behind the apex atom. Some studies have been carried out to determine the angular orbital symmetry [21][22] of the front atom of the tip apex by making force gradient images of a CO molecule over a Cu(111) substrate. The images are made with a tungsten tip in non-contact AFM
PDF
Album
Full Research Paper
Published 13 Nov 2017

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • scale of up to 100 μm in lateral and 25 μm in vertical direction under UHV conditions and at room temperature using a large-scale closed-loop scanner. Beside the topographic non-contact AFM mode also contact measurements as well as all major electrical characterization methods (SSRM, SCM, KPFM) are
PDF
Album
Full Research Paper
Published 28 Dec 2015

Electrospray deposition of organic molecules on bulk insulator surfaces

  • Antoine Hinaut,
  • Rémy Pawlak,
  • Ernst Meyer and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2015, 6, 1927–1934, doi:10.3762/bjnano.6.195

Graphical Abstract
  • molecules; non-contact AFM; ultra-high vacuum (UHV); Introduction Large complex molecules with tunable electronic properties are building block candidates for functional materials with special electrochemical and photophysical properties, which are of fundamental interest for many applications such as
PDF
Album
Full Research Paper
Published 18 Sep 2015

Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

  • Arnaud Caron and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2015, 6, 1721–1732, doi:10.3762/bjnano.6.176

Graphical Abstract
  • nanometer-scale plastic deformation of Pt(111) and the Pt57.5Cu14.7Ni5.3P22.5 metallic glass was investigated in ultra-high vacuum by AFM indentation and subsequent nc-AFM imaging using a VT-AFM manufactured by Omicron Nanotechnology GmbH, Germany. In non-contact AFM an AFM cantilever is driven to oscillate
PDF
Album
Full Research Paper
Published 13 Aug 2015

Nano-contact microscopy of supracrystals

  • Adam Sweetman,
  • Nicolas Goubet,
  • Ioannis Lekkas,
  • Marie Paule Pileni and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2015, 6, 1229–1236, doi:10.3762/bjnano.6.126

Graphical Abstract
  • based on a combination of STM and dynamic force microscopy (DFM) imaging and spectroscopy. DFM experiments, also known as non-contact AFM (NC-AFM), are carried out using a quartz tuning fork sensor in the qPlus geometry [16][17] to which a tip has been glued. Shifts in the resonant frequency of a tine
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2015

Advanced atomic force microscopy techniques II

  • Thilo Glatzel,
  • Ricardo Garcia and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 2326–2327, doi:10.3762/bjnano.5.241

Graphical Abstract
  • batteries for a comparison of their nanoscale electrical, electrochemical, and morphological properties [6] or the analysis of CdS quantum dots on TiO2 by a combination of AFM and X-ray photoelectron spectroscopy [7]. The folding and rupture of graphene on SiC analyzed by non-contact AFM and Kelvin probe
PDF
Editorial
Published 03 Dec 2014

Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations

  • Jens Falter,
  • Marvin Stiefermann,
  • Gernot Langewisch,
  • Philipp Schurig,
  • Hendrik Hölscher,
  • Harald Fuchs and
  • André Schirmeisen

Beilstein J. Nanotechnol. 2014, 5, 507–516, doi:10.3762/bjnano.5.59

Graphical Abstract
  • ) allows the imaging of surfaces with true atomic resolution and the resolution of intra-molecular structures of molecules [1]. Furthermore, the non-contact AFM (nc-AFM) technique has the capability of quantifying the interaction forces acting between the probing tip and the sample site with atomic
PDF
Album
Full Research Paper
Published 23 Apr 2014

Effect of contaminations and surface preparation on the work function of single layer MoS2

  • Oliver Ochedowski,
  • Kolyo Marinov,
  • Nils Scheuschner,
  • Artur Poloczek,
  • Benedict Kleine Bussmann,
  • Janina Maultzsch and
  • Marika Schleberger

Beilstein J. Nanotechnol. 2014, 5, 291–297, doi:10.3762/bjnano.5.32

Graphical Abstract
  • potential, on the other hand, the gold surface was used for calibrating the work function of the AFM tip during KPFM measurements. The contacted SLM sample is introduced into an ultra high vacuum system with a base pressure of about 2·10−10 mbar. Non-contact AFM measurements were performed using a RHK UHV
PDF
Album
Full Research Paper
Published 13 Mar 2014

Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies

  • Gheorghe Stan and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 278–288, doi:10.3762/bjnano.5.30

Graphical Abstract
  • , similar with what is used in non-contact frequency modulation AFM. In non-contact AFM, PLL tracking has been implemented in either constant-excitation frequency modulation [17][18] or constant-amplitude frequency-modulation [19][20]. In the following we will refer only to the constant-excitation PLL setup
PDF
Album
Full Research Paper
Published 12 Mar 2014

The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

  • Christian Wagner,
  • Norman Fournier,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 202–209, doi:10.3762/bjnano.5.22

Graphical Abstract
  • good agreement between the experiment and those simulations, systematic inconsistencies remained that we attribute to effects omitted from the initial model. Here we develop a more realistic simulation of single-molecule manipulation by non-contact AFM that includes the atomic surface corrugation, the
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2014

3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

  • Loïc Assaud,
  • Evans Monyoncho,
  • Kristina Pitzschel,
  • Anis Allagui,
  • Matthieu Petit,
  • Margrit Hanbücken,
  • Elena A. Baranova and
  • Lionel Santinacci

Beilstein J. Nanotechnol. 2014, 5, 162–172, doi:10.3762/bjnano.5.16

Graphical Abstract
  • non-contact AFM using a XE 100 microscope from Park systems. The crystalline structure of NiO, Ni and Pd has been characterized by X-ray diffraction using an INEL diffractometer equipped with a quartz monochromator and a horizontally disposed 1D curved position detector (CPS-120) that covers a 2θ
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2014

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • lateral force threshold, particle sliding was observed, which has allowed the transition from static to kinetic friction to be quantified [18]. A compromise between the contact and non-contact AFM techniques is the intermittent mode, the so called tapping mode. In this mode the phase shift of the
PDF
Album
Full Research Paper
Published 04 Feb 2011

Scanning probe microscopy and related methods

  • Ernst Meyer

Beilstein J. Nanotechnol. 2010, 1, 155–157, doi:10.3762/bjnano.1.18

Graphical Abstract
  • Microscopy, FMM: Force Modulation Microscopy, ic-AFM: intermittent contact AFM, TMAFM: tapping mode AFM, nc-AFM: non-contact AFM, KPFM: Kelvin probe force microscopy, EFM: Electrostatic force microscopy, MFM: Magnetic force microscopy, MRFM: Magnetic resonance force microscopy, NSOM: Near-field scanning
PDF
Album
Editorial
Published 22 Dec 2010
Other Beilstein-Institut Open Science Activities